
File Systems

Tasks and Design of a File System

Betriebssysteme Einführung 2 Chr. Vogt

Contents

File Organizations and File Access Methods

Directories

File Attributes and File Sharing

Storage Management

File System Caches

Disk Scheduling

Journaling File Systems

Additional File System Features

Acknowledgement: Figures are taken from William Stallings: „Operating Systems“

3 What is a File?

4 Common Operations on Files

5 What is a File System?

6 Possible File System Software Architecture (1)

7 Possible File System Software Architecture (2)

8 Elements of File Management

9 File Organization

10 Accessing File Records

11 Directories

12 Common Operations on Directories

13 Common File Attributes

14 File Sharing

15 Timing of a Disk I/O Transfer

16 Numerical Example for File Access Times

17 Storage Management

18 Contiguous Allocation

19 Chained Allocation

20 Indexed Allocation of Single Clusters

21 Indexed Allocation with Variable-Length Extents

22 Free Space Management

23 Defragmentation

24 File System Caches

25 Write-Behind vs. Write-Through Caching

26 What is Disk Scheduling?

27 First In First Out (FIFO) Disk Scheduling Policy

28 Shortest Service Time First (SSTF) Disk Scheduling

29 SCAN and C-SCAN Disk Scheduling Policies

30 N-step-SCAN and FSCAN Disk Scheduling Policies

31 Example for the Different Disk Scheduling Policies

32 Journaling (or: Log-Based) File Systems

33 Additional File System Features

Betriebssysteme Einführung 3 Chr. Vogt

What is a File?

A file is a collection of related information, treated as a single entity.

Users (programs) access files by name, and look at their contents in terms of records,
or simply byte ranges.

Files are stored on permanent media like hard disks, CD-ROMs, or tapes.

Storage of files is in units of blocks, determined by the geometry of the storage medium.

Files
have some internal organization,
can be accessed in different ways,
have additional attributes, e.g. a protection code, timestamps, etc.

Betriebssysteme Einführung 4 Chr. Vogt

Common Operations on Files

Retrieve_All Retreive all records of a file.
Retrieve_One Retreive a single record of a file.
Retrieve_Few Retrieve several records which satisfy a certain set of criteria.
Retrieve_Next Retreive the “next” record (in some sense).
Retrieve_Previous Retreive the “previous” record (in some sense).
Insert_One Insert a new record into the file.
Delete_One Delete an existing record.
Update_One Retrieve a record, update part or all of the record,

and rewrite the updated record into the file.

The necessity to perform these operations influences
the way a file is organized,
the way a file is stored.

Betriebssysteme Einführung 5 Chr. Vogt

What is a File System?

A File System
allows users (programs) to access files by name,
offers the users (programs) a view of the file contents in units of records or byte ranges,
offers the users (programs) methods for performing file operations, which are independent
of the actual storage device,
manages the available space on the storage devices,
manages the storage of files on different types of media.

Some (few) file systems take care of the internal organization of the files by
offering different file organizations,
offering different file access methods.

If this is done by the file system, many performance optimizations are possible.

Betriebssysteme Einführung 6 Chr. Vogt

Possible File System Software Architecture (1)

Betriebssysteme Einführung 7 Chr. Vogt

Possible File System Software Architecture (2)

The Device Drivers (which are not considered part of the file system)
communicate with the physical devices,
are responsible for starting I/O operations on a device,
process the completion of an I/O request.

The Basic File System
is concerned with the placement of blocks on the storage device,
is concerned with buffering blocks in main memory (file system cache).

The Basic I/O Supervisor
is responsible for file I/O initiation and termination,
is concerned with scheduling I/O operations to optimize performance (disk scheduling).

The Logical I/O layer
Allows locating and accessing files by name.
Provides general-purpose, record- or byte-range-oriented file I/O methods to applications,
Maintains basic data about the file (e.g. file size).

The Access Method specifies the way a file is accessed.

Betriebssysteme Einführung 8 Chr. Vogt

Elements of File Management

Betriebssysteme Einführung 9 Chr. Vogt

File Organization

The two most common file organizations are:

Sequential Files
Can have fixed length records, or variable length records.
Can only be accessed sequentially.
(With fixed length records, direct access by record number is possible.)

Indexed Files
In addition to the data in the file, one or more indexes are kept and maintained, which match
the value of some part (field) of the records with the position of the record in the file.
Indexes can be partial or exhaustive (one entry per record in the file).
Direct access to records by specifying a value for one of the index fields.
A file with only one index, where the records are stored sequentially by the value of the
index field is sometimes called an index-sequential file. Such a file can also be accessed
sequentially by key value.

Betriebssysteme Einführung 10 Chr. Vogt

Accessing File Records

Sequential Access
Accessing the records in their normal order, from first to last, or
Accessing the records in the order of a key value.
Is the only possible access on tapes.
Makes performance optimizations possible, e.g. by sequential storage, or read-ahead.

Direct Access
by record number (indexed file, or sequential file with fixed-size records), or
by key value (only for indexed files).
Possible on magnetic disks, and optical media (CD-ROMs, etc.).
Performance optimizations are more difficult (index organization and storage).

Often, the file system does not know, how a particular file will be accessed.

Betriebssysteme Einführung 11 Chr. Vogt

Directories

A directory is itself a file, which is owned by the file system. A directory
provides a mapping between file names and the files itself,
may contain additional attributes of the files (owner, protection code, access times etc.)

Most file systems use hierarchical
(tree-structured) directories, where
each diretory can contain both files
and subdirectories:

Betriebssysteme Einführung 12 Chr. Vogt

Common Operations on Directories

Search Find a file name in the directory file.

Create File Add an entry for the new file to the directory.

Delete File Remove the entry for the file from the directory.

List Directory List the contents of the directory: file names, and
selected attributes of the files.

Update Entry Update the value of some attribute (e.g. access time).

Betriebssysteme Einführung 13 Chr. Vogt

Common File Attributes

File name, file type, and file organization.
Address information:

Location on the device on which the file is stored.
Size used, and size allocated on the device.

File protection information:
Owner of the file.
Access rights.

Usage information:
Date and time when the file was created.
Date and time when the file was last accessed, and/or modified.
Date and time of the last backup.

File attributes may be stored in the directory, or in a separate data structure
(e.g. the File Allocation Table in FAT, or the Master File Table in NTFS).

Betriebssysteme Einführung 14 Chr. Vogt

File Sharing

There are two aspects to consider when sharing files:

Access Rights
A file protection mechanism allows to specify who (e.g. owner, group, world) is
allowed which type of access (e.g. read, write, execute, delete) to a file.

Management of simultaneous access.
Most file systems only provide a way to specify

exclusive access
shared access

for the whole file. A few file systems
offer more share modes (e.g. a reader-writer lock, which distinguishes read and write access),
allow to specify the share mode with a finer granularity (e.g. at record level).

Betriebssysteme Einführung 15 Chr. Vogt

Timing of a Disk I/O Transfer

To read or write, the disk head must be positioned at the desired track and at the
beginning of the desired sector.

Seek time is the time it takes to position the head at the desired track.

Rotational delay is the time it takes for the beginning of the sector to reach the head.

Betriebssysteme Einführung 16 Chr. Vogt

Numerical Example for File Access Times

A typical average seek time today is 5 to 10 ms.

At 10000 rpm, one revolution takes 6ms, so the average rotational delay is 3 ms.

Assume we want to read 1600 sectors (800 KB) from a disk which has 320 sectors per
track, and a rotation speed of 10000 rpm.

All 1600 blocks are contiguous 1600 random blocks on disk
Average seek: 10 ms (at most once per track) 10 ms per block
Rotational delay: 3 ms (at most once per track) 3 ms per block
Read time: 6/320 ms per block 6/320 ms per block
Total time: 5*10ms + 5*3ms + 30ms = 1600*(10+3)ms + 30ms =

0,095 s 20,83 s

Betriebssysteme Einführung 17 Chr. Vogt

Storage Management

Disks are physically organized in sectors (or: blocks). Commonly, a sector is 512 bytes.

A cluster is a fixed number of blocks. The cluster size for a volume is specified when the
volume is formatted.

Bigger clusters
reduce the amount of data needed for storage management,
waste more space due to internal fragmentation.

File systems use a cluster as the smallest allocation unit.

File systems need to allocate clusters to files.

File systems need to keep track of the free space on a volume.

Betriebssysteme Einführung 18 Chr. Vogt

Contiguous Allocation

Each file is stored in contiguous clusters.

The (maximum) size of a file must be
declared when the file is created, and the
space for it is preallocated.

Extending a file is difficult: Allocate space
for the new size, copy the file, deallocate
the previously allocated space.

External fragmentation occurs, and may
require occasional compaction (defrag-
mentation).

Both sequential and direct access are
possible.

Very good performance for sequential
access.

Betriebssysteme Einführung 19 Chr. Vogt

Chained Allocation

Allocation occurs on the basis of
arbitrary single clusters.

Each cluster contains a pointer to the
next cluster in the file.

The address information for the file only
consists of the start location and the
length of the file

No external fragmentation.

Only sequential access is possible.

Performance for sequential access is
worse than with contiguous allocation.

Betriebssysteme Einführung 20 Chr. Vogt

Indexed Allocation of Single Clusters

Arbitrary single clusters are used for the
storage of a file.

A table (index) contains the numbers of
all clusters assigned to a file.

The index is not stored in the directory,
but in a separate data structure (FAT,
MFT, …).

No external fragmentation.

Both sequential and direct access are
possible.

Performance for sequential access is
worse than with contiguous allocation.

Betriebssysteme Einführung 21 Chr. Vogt

Indexed Allocation with Variable-Length Extents

Instead of assigning individual
clusters, portions of several conti-
guous clusters, called extents, are
used.

The index contains one entry per
extent.

The file system may use a best-try-
contiguous approach when assigning
clusters to a file.

The performance of sequential access
is improved, depending on the number
and sizes of the extents.

Occasional defragmentation can be
performed to reduce the number of
extents.

Betriebssysteme Einführung 22 Chr. Vogt

Free Space Management

Most commonly, a bitmap is used to keep track of the free space on the disk.
The bitmap contains one bit per cluster.
In many file systems, the bitmap is a normal file on the disk, which is created when the
disk is formatted.

Searching for a free cluster, or a certain number of contiguous free clusters, requires
searching (parts of) the bit map. This search must be accelerated

by keeping (parts of) the bitmap in memory, or
by additional data structures in main memory, describing the free space, e.g. a linked list
of free portions on disk.

Betriebssysteme Einführung 23 Chr. Vogt

Defragmentation

With all kinds of storage management, defragmentation can be necessary, or can at
least improve the performance.

Files should be made contiguous (or nearly contiguous), by combining several extents
into a single one.

Free space should be consolidated into few, big areas by moving files.

The placement of files on the disk (beginning, middle, end of disk) also has an influence
on the performance of file accesses.

Defragmentation can be done
occasionally at specified times,
continously in a background process.

Betriebssysteme Einführung 24 Chr. Vogt

File System Caches

To reduce the number of I/Os, and thus improve the performance, as much data as
possible is kept in main memory.

Caching of file system metadata:
Retrieval pointers for the extents of open files.
(Parts of) the information about free space on the device.

Caching of file data:
Data read from the device is kept in memory for the case it‘s referenced again soon.
Read-ahead: Data is read from the device before being requested by the program.
Data written to disk is only written to memory, and will be flushed to disk later.
Can be particularly important for heavily used directories.

Betriebssysteme Einführung 25 Chr. Vogt

Write-Behind vs. Write-Through Caching

With write-behind (or write-back) caching
a write I/O is considered complete when the data has been written to the cache,
the data will be flushed to disk later.

With write-through caching
data will be written both to the cache and to the disk,
a write I/O is only considered complete after the data has been written to disk.

Most file systems use write-behind caching by default, because of its performance
advantages.

Depending on the particular file system, the kind of caching can be specified per
volume, or per directory, or per file, or per file open.

Betriebssysteme Einführung 26 Chr. Vogt

What is Disk Scheduling?

Seek time and rotational delay are the reasons why I/Os can take varying amounts of time.

Very often there will be a number of I/O requests for a single disk.

Selecting the requests randomly will result in the worst possible performance.

Disk scheduling means re-ordering the requests, taking the physical location on
disk into account.

Many different scheduling policies can be used.

Betriebssysteme Einführung 27 Chr. Vogt

First In First Out (FIFO) Disk Scheduling Policy

First in first out (FIFO) scheduling processes requests in the order in which they arrive.

FIFO is very easy to implement.

FIFO is fair, because it does not make a request wait in favor of some other request.

FIFO is acceptable, if the number of concurrent requests is small.

FIFO approaches random scheduling in performance, if there are many processes
competing for the disk.

Betriebssysteme Einführung 28 Chr. Vogt

Shortest Service Time First (SSTF) Disk Scheduling

Shortest Service Time First (SSTF) scheduling selects the request that requires the
least movement of the disk arm from its current position.

For each request, SSTF minimizes the seek time.

SSTF does not necessarily minimize the average seek time over a number of requests.

A request may have to wait a long time, or even remain unfulfilled until the request queue
is empty.

Betriebssysteme Einführung 29 Chr. Vogt

SCAN and C-SCAN Disk Scheduling Policies

With the SCAN scheduling policy
the disk arm moves in one direction, satisfying all outstanding requests en route,
until it reaches the last request in this direction,
then the arm direction is reversed, and the scan proceeds in the opposite direction.

SCAN scheduling
causes unpredictable delays for the requests (from immediate processing to long wait times),
favors newly arriving requests over already waiting ones, if the new request is for a track
closer to the current position of the disk arm,
is biased against the areas most recently traversed.

The C-SCAN (circular scan) scheduling policy
restricts scanning to one direction only,
when the last track in this direction has been visited, the arm is returned to the opposite
end of the disk, and the scan begins again.
reduces the delay for requests for tracks near „the other end“ of the disk.

Betriebssysteme Einführung 30 Chr. Vogt

N-step-SCAN and FSCAN Disk Scheduling Policies

The N-step-SCAN scheduling policy
segments the disk request queue into subqueues of length N,
processes the subqueues one at a time using SCAN,
places new requests into a queue different from the one being currently processed.

The FSCAN scheduling policy
uses two subqueues of arbitrary length,
alternately processes the subqueues,
places new requests into the queue which is not currently processed.

Both N-step-SCAN and FSCAN avoid that requests have to wait a very long time
because newly arriving requests are being processed first.

Betriebssysteme Einführung 31 Chr. Vogt

Example for the Different Disk Scheduling Policies

The following pages show an example for the use of different disk scheduling policies
from the book „Operating Systems“ by William Stallings.

The example assumes a disk with 200 tracks, and a disk request queue containing
requests for the tracks 55, 58, 39, 18, 90, 160, 150, 38, and 184, in this order.

199

175

150

125

100

75

50

25

0

(a) FIFO Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

Figure 11.8 Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN

Table 11.2 Comparison of Disk Scheduling Algorithms

(a) FIFO

(starting at track 100)

(b) SSTF

(starting at track 100)

(c) SCAN

(starting at track 100, in the
direction of increasing track

number)

(d) C-SCAN

(starting at track 100, in the
direction of increasing track

number)

Next track
accessed

Number of
tracks
traversed

Next track
accessed

Number of
tracks
traversed

Next track
accessed

Number of
tracks
traversed

Next track
accessed

Number of
tracks
traversed

55 45 90 10 150 50 150 50
58 3 58 32 160 10 160 10
39 19 55 3 184 24 184 24
18 21 39 16 90 94 18 166
90 72 38 1 58 32 38 20

160 70 18 20 55 3 39 1
150 10 150 132 39 16 55 16
38 112 160 10 38 1 58 3

184 146 184 24 18 20 90 32

Average seek
length

55.3 Average seek
length

27.5 Average seek
length

27.8 Average seek
length

35.8

Betriebssysteme Einführung 32 Chr. Vogt

Journaling (or: Log-Based) File Systems

Most file system operations require several disk writes. For example, creating a file requires
modifying the bitmap to allocate clusters to the new file,
possibly adding an entry for the new file in a data structure like the FAT or MFT.
modifying the directory file by adding an entry for the new file,

If the system fails in between such writes
the file system may be left in an inconsistent state,
the file system may have to be checked and repaired (if possible) during the next reboot. This
can be a very time-consuming operation.

Journaling (or: log-based) file systems record (log) changes to the meta data of the file
system, to enable (and speed up) the recovery of the file system after a system crash.

Journaling for the data in the file is normally not done by file systems, but, for
example, by database systems.

Betriebssysteme Einführung 33 Chr. Vogt

Additional File System Features

Compression
Data is compressed before writing it to disk.
Data is de-compressed after reading it from disk.

Encryption
Data is encrypted before writing it to disk.
Data is decrypted after reading it from disk.

Disk Quotas
The administrator can specify per-user limits for the amount of disk space used.
The file system keeps track of the disk space used by a specific user.

Bad Block Replacement
When the controller notifies the file system of an unrecoverable error on a certain block

the cluster containing this block can be assigned to a bad block file,
the cluster can be replaced by another one (with a possible data loss on a read,
but no data loss on a write operation).

