5. Synchronization (1)

5. Synchronization
5.1 Introduction
5.2 Vocabulary
5.3 Synchroniz. methods

Introduction (2)

* Synchronization: problems with ,parallel“ data
access

* Example: two processes increase a counter

inc_counter() Initial situation: w=10
{

w=read(Address); P1: P2:

w=w+1; w=read(Address); // 10

write(Address,w); w=w+1, i
} w=read(Address); // 10

w=w+1; /[11
write(Address,w); // 11

write(Address,w); // 11!l

result after P1, P2: w=11 - not 12!

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 3

Introduction (1)

* There are processes (or threads, Kernel
functions etc.) with shared access on certain
data, e.g.

- threads of the same process: shared memory

- processes with common memory-mapped file

- processes / threads open the same file for reading /
writing

- SMP system: scheduler (one for each CPU) access
the same process lists / queues

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 2

Introduction (3)

* Programmer's intention is one of the following
exceution orderings:

Initial situation: w=10 Initial situation: w=10
P1: P2: P1: P2:
w=read(Addr); // 10 w=read(Addr); // 10
w=w+1; // 11 w=w+1; /11
write(Addr,w); // 11 write(Addr,w); // 11
w=read(Addr); // 11 w=read(Addr); // 11
w=w+1; /] 12 w=w+1; /] 12
write(Addr,w); // 12 write(Addr,w); // 12
result after P1, P2: w=12 result after P1, P2: w=12

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 4

Introduction (4)

* Reason: inc_counter() does not work
atomically:

- scheduler can preempt function

- function could be running on several CPUs
simultaneously

* Solution: Find all code parts which reference
shared data, and guarantee that there is always
at most one process that accesses the date
(mutual exclusion)

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 5

Introduction (6)

Race Condition:

* several parallel threads / processes use a
shared resource

* state depends on order of execution
* race: threads ,race” for first / fastest access

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 7

Introduction (5)

* Analogous problem with databases:

exec sgl CONNECT ...

exec sgl SELECT balance INTO $var FROM accounts
WHERE accno = $no

$var = $var - $withdrawal

exec sgl UPDATE accounts SET balance = $var
WHERE accno = $no

exec sgl DISCONNECT

Accessing the same data record in parallel can
lead to errors

* Definition of (database) transaction which
must be atomic and isolated

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 6

Introduction (7)

Why avoid Race Conditions?

* results of parallel computations are well-defined
(i. e. potentially false)

* when testing the program, the developer could
(accidentally) always see a ,correct” execution
order; but later there might occasionally appear
a false“ one.

* Race Conditions are security risks

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 8

Introduction (8)

Race Condition as security risk
* used by attackers
* simplified example:

read(command)
f=open("/tmp/script","w")
write(f,command)

f.close()
chmod("/tmp/script","a+x")
system("/tmp/script")

Attacker changes file contents before the
chmod; program executes with victim's rights

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 9

Introduction (10)

* not all attempts to access data are risky:

- concurrent reading data does not cause harm

-, disjoint* processes (those which share no data)
can always access without protection

* Whenever several processes / threads / ...
concurrently access an object
— and at least one of them writes -,
the overall system behavior is
unpredictable and irreproducible.

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 11

Introduction (9)

* |dea: use a lock to restrict concurrent access to
one process (thread, ...):

inc_counter() {
flag=read(Lock);
if (flag == LOCK_UNSET) {
set(Lock);
[* start of ,critical region” */
w=read(Address); w=w+1;
write(Address,w);
/% end of ,critical region“ */
release(Lock);
Iy
}

* Problem: lock variable is not protected

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 10

Content overview:

Synchronization
e 5.1 Introduction, * 5.4 Synchronization on
Race Conditions Unix/Linux
- Locking
e 5.2 critical sections and - Signals
mutual exclusion - System V IPC:
Message queues,
* 5.3 Synchronisation methods SV Semaphores,

- software-based Shared memory

synchronization o
- Standard primitives: * 5.5 Applications
mutexes, semaphores, - Mutex objects

events, monitors - Scope of_ _
- locking synchronization

- messages

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 12

Critical regions (1)

* program section which accesses shared data

- need not be different programs: could be several
instances (processes) of the same program!

code block from first to last access

don't protect the code, but the data!
* terminology: ,enter and ,leave” a critical region

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 13

Mutual exclusion

* If there's never more than one process in the
same critical region, that is called
,mutual exclusion (mutex)

* |tis the programmer's task to satisfy this
requirement

* the operating systems offers tools to implement
mutual exclusion, but it doesn't protect the
software from programming faults

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 15

Critical regions (2)

* Requirements for parallel threads:

- No more than one thread may be inside a critical
region (at the same time)

- No thread that is outside of critical region is allowed
to block another process

- No thread should wait forever to enter a critical
region

- Deadlocks should be avoided (e.g.: two processes
are inside different critical regions and block one
another)

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 14

Software-based synchroniz. (1)

1st attempt: lock variable (is in the introduction)

* initialize lock variable to false

* process that wants to enter the critical region tests
lock==false - if condition is fulfilled:

- set lock=true, while (lock) {
/* wait */
- enter (and then leave) Y
critical region lock=true;
critical_region();
- (re)set lock=false lock=false;

* this simply moves the problem from the original
variable to the lock variable

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 16

Software-based synchroniz. (2)

2nt attempt: remember ,next process*

* lock variable turn holds information: which process
may enter the critical region next?

while (true) { while (true) {
while (turn I=1) { hile (tbrn 1= 2) {
/* wait */ [* wait */
critical_region(); criticall region();
turn=2; tyirn=1,
} }

e avoids Race Conditions

* but: critical region can only be used in an
alternating fashion

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 17

Software-based synchroniz. (4)

4th attempt (Dekker): combination of lock
variables and alternation

while (true) { while (true) {
Cl=true; C2=true;
while (C2) { while (C1) {

if (turn 1= 1) { if (fturn = 2) {

Cl=false; C=false;
while (turn = 1) { while (tgrn 1= 2) {
* wait */ 1* wait */
I h
1=true; Q2=true;

h ;
critical_region(); tritical_region();
turn=2; turn=1;
Cl=false; G2=false;

} }

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 19

Software-based synchroniz. (3)

3rd attempt: for each thread a separate
variable that says: ,thread is in crit. region®

while (true) { while (true) {
Cl=true,; C2=true,
while (C2) { while (C1) {

* wait */ * Wait */
kritischer_bereich(); kritischer_bereich();
Cl=false; C2=false;

} }

e avoids Race Conditions

* Deadlocks happen when both processes want
to enter the critical region simultaneously

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 18

Software-based synchroniz. (5)

Alternative: Peterson's algorithm

Cl=true; C2=true;

turn=2; turn=1;

while (C2 && turn==2) while (C1 && turn==1)
[* warten */; * warten */;

critical_region(); critical | region();

Cl=false; g2=false;

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 20

Software-based synchroniz. (6)

Peterson's Algorithmus -
guarantees mutual exclusion:

e when P_ sets C to true, P, can no longer enter its
critical region

« If P, already was in the critical region then C, was
already true, i.e., P, was not allowed to enter its critical
region

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 21

Software-based synchroniz. (7)

Peterson's Algorithmus -
no mutual blocking:

Assume that P1 is blocked in the while loop, i.e.
C2=true and turn=2 (P1 can enter the critical region when one
of the conditions no longer holds, i.e. either C2=false or turn=1)

then only two possibilities:

* P2 waits for entering its critical region -> this cannot be the case
since with turn=2 it can enter immediately

* P2 goes through its critical region repeatedly, monopolizing access
to it -> this cannot be either since P2 sets turn=1 before entering
(thus letting P1 try before)

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 5. Synchronization (1) — Slide 22

