5. Synchronization (3)

5. Synchronization
5.3 Synchronization methods

Dining Philosophers (2)

* firstidea:
#define N 5 /I number of philoshphers
philosopher (int i) { /I'i: index of the philosopher (0...N-1)
while (TRUE) {
think(); /I philosopher thinks
take_fork(i); /I take left fork
take_fork((i+1)%N); /I take right fork (% = modulo)
eat(); /I philosopher eats
put_fork (i); /I return left fork
put_fork ((i+1)%N); /I return right fork

- take_fork(i) blocks the thread until the fork is available

- solution is wrong: deadlock occurs when all
philosophers simultaneously take the left fork

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 3

Dining Philosophers (1)

* Five philosophers at one table (Dijkstra 1965)

- Each philosopher has a plate
of spaghetti.

- Between two plates there is
one fork.

- Each philospher changes state
between thinking and eating

- In order to eat, a philosopher
requires both forks, left and right
of his plate.

* Task: — don't let the philosophers starve
— attain maximal level of parallelism

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 2

Dining Philosophers (3)

* 1st correction attempt:

- each philosopher checks (after taking the left fork)
whether the right fork is available

- if it is not, he puts back the left fork, waits for a short
time and takes the left fork again

* if waiting time is random, this could work ,often”
(not good enough)

* in case of equal waiting times there could be an
infinite loop (all philosophers take left fork, put it
down, take it again etc.) = ,starvation®

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 4

Dining Philosophers (4)

* 2nd correction attempt:

- protect whole block from taking the first work to putting
them both down with a mutex, i. e.
while (TRUE) {
think();
wait (rmutex); I/ enter critical region
take_fork(i);
take_fork((i+1)%N);
eat();
put_fork (i);
put_fork ((i+1)%N);
signal (nutex); I/ leave critical region

}
- OK, but not efficient: only one philosopher can eat at
any given time - but five forks would allow two to eat

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 - 2006-11-29 5. Synchronization (3) — Slide 5

Hans-Georg EBer, FH Miinchen

Dining Philosophers (6)

#define N 5

#define LEFT (i-1)%N
#define RIGHT (i+1)%N
#define THINKING 0
#define HUNGRY 1
#define EATING 2

/I number of philosophers
/I index of left neighbor
/I index of right neighbor
/I philosopher thinks
/I philosopher tries , Gabeln zu nehmen
/I philosopher eats

typedef int semaphore; /I semaphores are special "int"s

int state[N]; /I vector for states

semaphore mutex=1; /I semaphore (mutex) for mutual exclusion
/I of access to vector state

semaphore sem[N]={0}; /I one semaphore per philosopher

philosopher (int i) /I i: which philosopher (0 -- N-1)
while (TRUE) { /I infinite loop
think (); /I philosopher thinks
take_forks (i); /I take both forks or block
eat (); /I eat
put_forks (i); /I put both forks
}
}

Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 7

Dining Philosophers (5)

e correct solution:

- save philosophers' states in array state[|

transition only possible if no
neighbor eats

take forks

\ A‘S

- semaphore sem[i] for each philosopher:
blocks if one fork (or both) is unavailable

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 6

Dining Philosophers (7)

take_forks (int i) { /I i: which philosopher (0 to N-1)

}

put_forks (int i) {

wai t (mutex); /I enter critical region

state[i] = HUNGRY; /I philosopher is hungry

test (i); /I try to get both forks

si gnal (mutex); /I leave critical region

wai t (semli]) /I block if cannot get both forks

/I i: which philosopher (0 to N-1)

wai t (mutex); /I enter critical region

state[i] = THINKING; // philosopher finished with eating

test (LEFT); /I test whether left phil. can and wants to eat
test (RIGHT); /I test whether right phil. can and wants to eat
si gnal (mutex); /I leave critical region

}
test (int i) { I test whether phil. i can and wants to eat
if (state[i] == HUNGRY &&
state[LEFT] != EATING &&
state[RIGHT] != EATING) {
state[i] = EATING;
si gnal (sem(i]); /I philosopher i can eat now, so wake him up
}
}

Hans-Georg Eer, FH Miinchen

Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 8

Example:

1I'i=2, sem[2]=0

think();

take_forks (2);
wait (mutex);
state[2] = HUNGRY;
test (2);

Phil. 2 and 3 want to eat

/I i=3, sem[3]=0

state[2] == HUNGRY? yes

[
state[1] != EATING? vyes
state[3] = EATING? vyes
>

think();
take_forks (3);
wait (mutex);

state[2] = EATING; state[3] = HUNGRY;

signal (sem[2]); /I sem[2]=1 test (3);
sig_nal (mutex);) state[3] == HUNGRY? yes
wait (sem[2]); // Sem. is 1, turns O state[2] '= EATING? NO !!

eat ();
put_forks (2);
wait (mutex);
state[2] = THINKING;

state[4] != EATING? vyes

-> do nothing (no signal() call)
signal (mutex);
wait (sem([3]); // is O, block!

test (1); // possibly wake up others

test (3);
signal (mutex);
loop...

[blocks while philosopher 2 eats]

eat ();
put_forks (3);
wait (mutex);

state[3] = THINKING;
test (2); // possibly wake up others
test (4);
signal (mutex);
loop...

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 - 2006-11-29 5. Synchronization (3) — Slide 9

Monitors (2)

* Monitor: collection of procedures/functions
(methods), variables, special condition variables
and data structures:

- processes can call methods of the monitor, but
cannot otherwise access its internal data structures

- at each point in time
only one single process can be active in the monitor
(i.e.: exceute a monitor method)

* monitor is released by exiting the monitor method

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 11

Monitors (1)

Motivation

* semaphores and mutexes force the programmer to
call wait() and signal() before or after each critical
region, respectively

* if this is forgotten just one time, synchronization will
break

* Monitor encapsulates the critical regions

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 10

Monitors (3)

Process 1 Process 2

shared

Mutex

Process 1 Monitor

Process 2 be crit_1 ()
4

MOI‘IItOr crit_1();_/m// -_ .
vars

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 12

Monitors (4)

simple example: accessing a disk, using a mutex

nmut ex disk_access = 1; wait (disk_access);
/I read data from disk
signal (disk_access);

wait (disk_access);
/I write data to disk
signal (disk_access);

same example, now with monitor

noni tor disk { disk.read (da, ma);
entry read (diskaddr, memaddr) {
/I read data from disk
¥

éntry write (diskaddr, memaddr) {
/I write data to disk

disk.write (da, ma);

init 01

/I initialize device
}
I

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 - 2006-11-29 5. Synchronization (3) — Slide 13

Monitors (6)

* Monitor concept reminds of

- classes (object oriented programming)
- modules (modular programming)

* encapsulation of procedures and variables
(except through procedures explicitly defined
public, there is no way to access the monitor)

* simple and concise method for protecting
critical regions, but:

e busy waiting - sleep/wakeup would be better

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 15

Monitors (5)

* monitor construct is part of a programming
language

* compiler (and not the programmer) is responsable
for guaranteeing mutual exclusion

* implementation (by the compiler) e.g. with
semaphore/mutex:

- monitor disk - semaphore m disk = 1;
- entry funktion () { - void funktion () {
/* Code */ wai t (m._di sk);
} /* Code */
signal (m.disk);
}
- disk.funktion(); - funktion();
Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 14

Monitors (7)

Condition Variables

for each condition variable there are wait and
signal functions:

* m_wait (var). block calling process (it releases
the monitor)

* m_signal (var). unblock blocked process (this
will wake up a process which has left the
monitor by calling m_wait); is called by a
thread that is just about to leave the monitor

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) - Slide 16

Monitors (8)

Monitor

@a [

Hans-Georg EBer, FH Miinchen

Process 1 Process 2

f0
condition
variable T g0
; |
procedure| f() { m_wait(cv) o
wait(cv);]
| time
}
|
procedure| g() { | . m_signal(cy)
! 'gignal(cv);

Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 17

Monitors (10)

Producer Consumer moni tor iostream {
. . item buffer;
Problem with monitor int count;

condi ti on nonenpty, nonfull;

entry append(item x) {
if (count == 1) mwai t (nonful I');
put(buffer, x); // put is a local procedure
count = 1;
m si gnal (nonenpty);

entry remove(item Xx) {
if (count == 0) m wai t (nonenpty);
get(buffer, x); // get is a local procedure

count = 0;
m si gnal (nonful |');
}
init() {
count = 0; // initialization
Source: Prof. Scheidig, Univ. Saarbriicken, } }

http://hssun5.cs.uni-sb.de/lehrstuhl/
WS0607/Vorlesung_Betriebssysteme,
- adapted to C syntax

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 19

Monitors (9)

* blocked processes move
to a queue belonging to
the condition variable (on
which the process
blocked)

* status (cv) returns
number of processes
waiting on this cond. var.

* internal queues have
precedence over
processes trying to enter
the monitor from outside

Hans-Georg EBer, FH Miinchen

-

queue of
entering
processes

monitor waiting area Entrance

.,
ll__l MONITOR

condition c1 local data

cwait(cl)

;
I

condition variables

Procedure 1

[—aL{|0—0O

condition cn

L

cwait(cn)

dillGe

urgent queue

Procedure k

Oo—0O

01 CF
picture: Stallings, fig. 5.21 Exit l

Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 18

Java and Monitors (1)

Java uses monitors to synchronize threads

key word synchronized

a class that contains only synchronized
methods is effectively a monitor

no named condition variables
* queue:
- m_wait; wait

- m_signal: notify (wakes up a thread)
notifyAll (wakes up all threads)

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 20

Java and
Monitors (2)

class BoundedBuffer extends MyObject {
private int size = 0;
private double[] buf = null;
private int front = 0, rear = 0,
count = 0;

public BoundedBuffer(int size) {
this.size = size;
buf = new double[size];

}

public synchroni zed void
deposit(double data) {
while (count == size) wai t ();
buffrear] = data;
rear = (rear+l) % size;
count++;
if (count == 1) noti fy();
}

public synchroni zed double fetch() {
double result;
while (count == 0) wai t ();
result = bufffront];
front = (front+1l) % size;

count--;
if (count == size-1) noti fy();
return result;
source: http://www.mcs.drexel.edu/~shartley/ }
ConcProgJava/Monitors/bbse.java }
Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 - 2006-11-29 5. Synchronization (3) — Slide 21

Barriers (2)

Thread 1 ‘ % ‘

Thread 2 ‘ ‘
eads [N |

Barrier

 threads call barrier() and block

* only when all threads (all members of a group)
have called barrier(), they can continue

Hans-Georg Efer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 23

Barriers (1)

several phases

Idea: break down complex computation into

before entering a new phase, all threads wait

until they have all finished the old phase

then e.g. distribution of intermediate results
finally all threads continue their computations

(independently) — until reaching the next barrier

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 22

Locking (1)

Locking extends the functionality of mutexes by offering
miscellaneous lock modes and defining their compatibility:

* Concurrent Read: read access, other writers are allowed.
e Concurrent Write: write access, other writers are allowed.

* Protected Read: read access, other readers allowed, but no
other writer (share lock)

* Protected Write: write access, other readers allowed, but no
other writer (update lock)

e Exclusive: write access, all other accesses forbidden

Hans-Georg Eer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 24

Locking (2)

ncurrent ncurrent | protect rotect .
concurrent | concurrent | protec ed | pro ec ed exclusive
read write read write
concurrent
X X X X -
read
concurrent
! X X - - -
write
protected X) X))
read
protected X 3) 3)
write
exclusive - - - - -
Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 S. Synchronization (3) — Slide 25

Locking (3)

* thread requests lock with a specific mode.

- if the lock mode agrees with already active locks of
other threads, the lock will be granted.

- if the lock is incompatible with some other process’
lock already in place, the thread will block until the
lock can be granted.

* locking mechanisms are implemented
- by the operating systems
- by user level applications (especially data bases)

Hans-Georg EBer, FH Miinchen Operating Systems I, WS 2006/07 — 2006-11-29 5. Synchronization (3) — Slide 26

